Closing Fri:	$2.7,2.7-8$	Find $p^{\prime}(3)$.
Closing Tues:	2.8	

Closing next Thurs: 3.1-2
Closing next Fri: 3.3 (last before Exam1)

2.7-8 Derivatives

Recall: We defined the slope of the tangent line to $f(x)$ at $x=a$ by

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

We call this value the derivative and denote it by $f^{\prime}(a)$.
(From HW 2.7-8/6)
Entry Task: An object is moving on a straight line and its position is given
by $p(t)=\frac{t^{2}}{t-1}$ feet.

Notes/Observations:
4. Given $y=f(x)$.

1. We call $f^{\prime}(a)$ the derivative of $f(x)$ at $x=a$.
2. Graphically, $f^{\prime}(a)$ is the slope of the tangent line to $y=f(x)$ at $x=a$.
3. This is equivalent to saying $f^{\prime}(a)$ is the instantaneous rate of change for $y=f(x)$ at $x=a$.
4. The tangent line to $y=f(x)$ at $x=a$ will always look like

$$
y=f^{\prime}(a)(x-a)+f(a)
$$

(Like HW 2.7/6)
Example: Consider the ellipse

$$
x^{2}+2 y^{2}=6
$$

Find the slope of the tangent line at

$$
(x, y)=(\sqrt{2}, 1)
$$

2.8 The derivative function

Example: Let $f(x)=2 x^{2}-3 x$

1. Find $f^{\prime}(3)$.
2. Find $f^{\prime}(x)$.

Notes/Observations:
Given $y=f(x)$.

- $y=f^{\prime}(x)$ is a new function.
- $f(x)=$ "height of the graph at x "
- $f^{\prime}(x)=$ "slope of $f(x)$ at $x^{\prime \prime}$
- Again, $f^{\prime}(x)$ is the "instantaneous rate of change" (speedometer speed)
- The units of $f^{\prime}(x)$ are $\frac{y \text {-units }}{x-\text { units }}$.

Fundamental to all applications:

$y=f(x)$	$y=f^{\prime}(x)$
horiz. tangent	zero
increasing	positive
decreasing	negative

Example:

$$
g(x)=\frac{2 x}{x+3}
$$

1. Find $g^{\prime}(2)$.
2. Find $g^{\prime}(x)$.

Notation:
Early we found

$$
\begin{array}{ll}
\text { if } & f(x)=2 x^{2}-3 x, \\
\text { then } & f^{\prime}(x)=4 x-3
\end{array}
$$

Other ways to write this include:

$$
\begin{aligned}
y^{\prime} & =4 x-3 \\
\frac{d y}{d x} & =4 x-3 \\
\frac{d}{d x}\left(2 x^{2}-3 x\right) & =4 x-3
\end{aligned}
$$

Later we will also discuss:

$$
f^{\prime \prime}(x)=y^{\prime \prime}=\frac{d(d y / d x)}{d x}=\frac{d^{2} y}{d x^{2}}
$$

Example:

$$
\begin{array}{rlrl}
\text { if } & y & =f(x) & =2 x^{2}-3 x, \\
\text { then } & y^{\prime} & =f^{\prime}(x)=4 x-3 \\
\text { and } & y^{\prime \prime} & =f^{\prime \prime}(x)=4
\end{array}
$$

which can also be written as

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}(4 x-3)=4
$$

Differentiability

Sometimes we can have a place where "slope of tangent" doesn't make sense.

Definition:
We say a function, $y=f(x)$ is
differentiable at $x=a$ if the
following limit exists:

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Otherwise it is not differentiable at $x=a$.

In order to get differentiable:

1. It must be defined at $x=a$.
2. It must be continuous at $x=a$.
3. The "slope" must be the same from both sides.

Examples:

1. $f(x)=\frac{1}{x-3}$
$f(x)$ is not defined at $x=3$.
Thus, it is not continuous at $x=3$.
And it is not differentiable at $x=3$.
2. $g(x)=\left\{\begin{array}{cc}2 x-1, & \text { if } x<2 ; \\ x^{2} & , \text { if } x \geq 2 .\end{array}\right.$
$g(x)$ is defined at $x=2 .(g(2)=4)$
But, $\mathrm{g}(\mathrm{x})$ is not cont. at $x=2$
because $\lim _{x \rightarrow 2^{-}} g(x)=3$ and

$$
\lim _{x \rightarrow 2^{+}} g(x)=4
$$

Thus, $\mathrm{g}(\mathrm{x})$ is not differentiable at $\mathrm{x}=2$.
3. $k(x)=|x|$
$k(x)$ is defined at $x=0 .(\mathrm{k}(0)=0)$
$k(x)$ is continuous at $x=0$.
But $\mathrm{k}(\mathrm{x})$ is not differentiable at $\mathrm{x}=0$.
(The slope from the left is -1 and
the slope from the right is +1)
There is a "sharp point" at $x=0$.
4. $j(x)=x^{1 / 3}$
$j(x)$ is defined at $x=0 .(j(0)=0)$
$j(x)$ is continuous at $x=0$.
But $\mathrm{j}(\mathrm{x})$ is not differentiable at $\mathrm{x}=0$.
(The slope goes to infinity as you get close to 0).
There is a vertical tangent at $x=0$.

